
Test Problem Database for Experimental

Optimization (ver. 1.3)∗

content by Gene A. Bunin†, typeset by Maurício Melo Câmara

LATEXversion: February 22, 2017

∗Extracted from http://ccapprox.info/expopt/.
†If needed, you can contact the author at gene.a.bunin@ccapprox.info.

http://ccapprox.info/expopt/

Contents

1 Overview 3

2 Solution Procedure 3

3 Performance Metrics 5
3.1 Metrics 1-3: Average Suboptimality with Penalty for Constraint

Violations . 6
3.2 Metric 4: Number of Constraint Violations 7
3.3 Metrics 5-7: Suboptimality at the Final Experiment with Penalty

for Constraint Violations . 7
3.4 Metrics 8-10: Number of Experiments Needed to Converge within

a Tolerance . 7
3.5 Metric 11: Average Computation Time of Algorithm per Iteration 7

4 Algorithms 8

5 Test Problems and Results 16
5.1 Test Problem #1: Maximizing Pro�t in the Williams-Otto Reactor 17
5.2 Test Problem #2: Maximizing Pro�t in the Williams-Otto Re-

actor (Constrained) . 18
5.3 Test Problem #3: Minimizing the Batch Time of Polystyrene

Production . 19
5.4 Test Problem #4: Maximizing Electrical E�ciency in a Solid

Oxide Fuel Cell Stack . 20
5.5 Test Problem #5: Minimizing the Overall Pumping E�ort in the

"Trois Bacs" . 21
5.6 Test Problem #6: Maximizing Production in a Continuous Stirred-

Tank Reactor . 22
5.7 Test Problem #7: Maximizing Production in a Batch Reactor

with a Reversible Reaction . 23
5.8 Test Problem #8: Maximizing Production in a Fed-Batch Reac-

tor with Three Reactions . 24
5.9 Test Problem #9: Batch-to-Batch Tuning of a Temperature-

Tracking Model-Predictive Controller 26
5.10 Test Problem #10: Iterative Tuning of a Fixed-Order Controller

in a Torsional System . 27
5.11 Test Problem #11: Minimizing the Steady-State Production Cost

of a Gold Cyanidation Leaching Process 28

6 Submit Problem/Algorithm 30

7 Update Log 31

2

1 Overview

The experimental optimization problems tested here have the standard form

minimize
u

φp(u)

subject to gp,j(u) ≤ 0, j = 1, ..., ngp
gj(u) ≤ 0, j = 1, ..., ng

uLi ≤ ui ≤ uUi , i = 1, ..., nu,

(1)

where u = (u1, u2, . . . , unu
) denotes the nu decision variables, subject to the

lower and upper limits uLi and uUi , and φ, g : Rnu → R denote the cost and con-
straint functions, respectively. The subscript p is used to denote those functions
that are experimental in nature and whose values may only be evaluated for a
given u by carrying out a (presumably) expensive experiment. By contrast, the
functions without this subscript � namely, the numerical constraints gj � may
be evaluated for any u without running any experiments. For certain problems,
the cost function may also be numerical in nature, in which case φp(u) is simply
replaced by φ(u) in the formulation above.

To solve an experimental optimization problem, one starts with an ini-
tial decision-variable set u0 and generates a chain of additional experiments
u1,u2, . . . by using either an iterative algorithm or an algorithmic de-
sign procedure, with the goal that the �nal experiments be close to the prob-
lem solution.

The goal of this project is to create a platform where di�erent experimen-
tal optimization algorithms may be tested en masse for a large collection of
experimental optimization problems and classes of such problems. While it is
clear that no algorithm can be the best for all problems, it is very pos-
sible that certain algorithms would be the best for certain classes of problems
on average, and it is hoped that this platform will succeed in discovering these
links. Additionally, since the performance of an algorithm is itself subjective
and depends on how each user judges performance, a number of performance
metrics are used, such as convergence speed, constraint violations, and amount
of suboptimality.

Because experimental optimization problems typically arise in engineering
and real-life scenarios, the problems considered here are derived from case stud-
ies where the real experiments may be simulated by a reasonably accurate model
of reality. Put otherwise, the focus is on well-thought-out case studies and not
on mass-generated mathematical problems, although the latter also provide a
valid manner of testing algorithms in certain contexts.

2 Solution Procedure

Letting k denote an experiment index, each of the algorithms tested must iter-
atively generate the next set of decision variables, uk+1, when given

• the past decision-variable sets u0,u1, . . . ,uk,

• the corresponding measurements/estimates of the experimental cost/con-
straint function values,

3

φ̂p(u0), φ̂p(u1), . . . , φ̂p(uk) and ĝp,j(u0), ĝp,j(u1), . . . , ĝp,j(uk),

that are obtained for the experiments at u0,u1, . . . ,uk,

• the statistical properties of the measurement/estimation noise,

• the de�nitions of the limits uLi , u
U
i and the numerical constraint functions

gj ,

• (optional) a model of the experimental functions φp and gp,j .

For the sake of simplicity, all of the noise corruption (w) in the measure-
ments/estimates will be additive and white Gaussian, with

φ̂p(uk) = φp(uk) + wφ,k

ĝp,j(uk) = gp,j(uk) + wj,k

holding for any k, with wφ,k ∼ N (0, σ2
φ) and wj,k ∼ N (0, σ2

j). These probability
distributions will be assumed to be known by the user � i.e., a priority in these
test problems, at least for the time being, is how each algorithm rejects noise
whose statistics are known. Problems for which the probability distributions
are unknown may be included in the future, however.

The average performance of an algorithm for a given test problem is obtained
by solving the problem 100 times with di�erent pre-generated noise elements.
The following MATLAB code (algotest.m) may be used to carry out this
procedure:

1 f unc t i on [per fave , convper] = a l g o t e s t (u0 , k f i n a l , sigmaphi , sigmag , uL ,
uU, ustar , Deltaphi , gpmax , gmax , algonum)

2 f o r i = 1:100
3 no i s e = dlmread (s t r c a t ([' no i s e ' num2str (i) ' . txt '])) ;
4 wphi = no i s e (1 , :) ;
5 wg = no i s e (2:1+ length (sigmag) , :) ;
6 u = u0 ;
7 phiphat = [] ;
8 gp = [] ;
9 gphat = [] ;

10 input = [] ;
11 f o r k = 0 : k f i n a l
12 i f e x i s t (' ph i eva l .m') == 2
13 phip (k+1 ,1) = ph i eva l (u(k+1 , :)) ;
14 e l s e
15 phip (k+1 ,1) = phipeva l (u(k+1 , :)) ;
16 end
17 phiphat (k+1 ,1) = phip (k+1 ,1) + sigmaphi ∗wphi (k+1) ;
18 i f l ength (sigmag) > 0
19 gp (k+1 , :) = gpeval (u(k+1 , :)) ;
20 gphat (k+1 , :) = gp (k+1 , :) + sigmag .∗wg (: , k+1) ' ;
21 end
22 t i c ;
23 [u (k+2 , :) , output] = a lgo (u , phiphat , gphat , sigmaphi , sigmag , uL ,

uU, algonum , input) ;
24 input = output ;
25 t (k+1) = toc ;
26 end
27 pe r f (: , i) = p e r f e v a l (u (1 : end−1 , :) , phip , gp , uL ,uU, ustar , Deltaphi ,

gpmax , gmax , t) ;
28 end

4

http://ccapprox.info/expopt/algotest.m

29 f o r i = 1 :11
30 i f i < 8 | | i == 11
31 per fave (i , :) = [mean(pe r f (i , :)) s td (pe r f (i , :))] ;
32 e l s e
33 pe r f 0 = pe r f (i , :) ;
34 pe r f 0 (pe r f 0 > k f i n a l) = [] ;
35 per fave (i , :) = [mean(pe r f 0) std (pe r f 0)] ;
36 convper (i −7) = length (pe r f 0) ;
37 end
38 end
39 end

Here, the inputted u0 is the initial decision-variable set u0 (in row vector
form). kfinal is the number of additional experiments that are run to solve the
problem. sigmaphi is σφ, i.e., the standard deviation of the noise element of
the cost, while sigmag is a row vector specifying the standard deviations of the
noise elements of the experimental constraints, with sigmag(j) corresponding
to σj . In the case that the problem has no experimental constraints, the setting
sigmag = [] is used. uL and uU are both row vectors corresponding to the lower
and upper limits, uL = (uL1 , u

L
2 , . . . , u

L
nu

) and uU = (uU1 , u
U
2 , . . . , u

U
nu

). ustar

is the best known solution to the problem, while Deltaphi, gpmax, and gmax

are scaling parameters for the performance metrics. Finally, algonum speci�es
which algorithm should be tested. Apart from algonum, which is varied to test
di�erent algorithms, the other settings are all �xed for each problem a priori
and are provided together with the problem.

In order for this �le to be executed, one needs to download:

• the pre-generated noise elements (noise.rar), extracting them where
MATLAB will �nd them,

• the cost evaluation �le phipeval.m/phieval.m and, if needed, the con-
straint evaluation �les, gpeval.m and geval.m (available separately for
each problem),

• models of the experimental functions, phimod.m and gmod.m, if the algo-
rithm tested requires a model (available separately for each problem),

• any problem-dependent auxiliary �les (available separately for each prob-
lem),

• the main algorithm �le, algo.m,

• any algorithm-dependent auxiliary �les (available separately for each al-
gorithm),

• the performance evaluation �le, perfeval.m.

All testing is carried out in MATLAB.

3 Performance Metrics

A total of 11 performance metrics is used to evaluate an algorithm's performance
for a particular problem, with each computed via the performance evaluation
�le (perfeval.m).

5

http://ccapprox.info/expopt/noise.rar
http://ccapprox.info/expopt/algo.m
http://ccapprox.info/expopt/perfeval.m
http://ccapprox.info/expopt/perfeval.m
http://ccapprox.info/expopt/perfeval.m

3.1 Metrics 1-3: Average Suboptimality with Penalty for
Constraint Violations

The �rst three metrics attempt to gauge �average suboptimality� as

1

kfinal + 1

kfinal∑
k=0

(φp(uk)− φp(u∗)) ,

where u∗ is the best known optimal point of the problem. This quantity is par-
ticularly crucial in applications where the degree of optimality of each individual
experiment is important, and where it is of interest to minimize the number of
strongly suboptimal experiments. A penalty for constraint violations is included
so as not to reward those algorithms that obtain low (or even negative) average
suboptimality by violating the constraints:

1

kfinal + 1

kfinal∑
k=0

(φp(uk)− φp(u∗))

+
1

kfinal + 1

kfinal∑
k=0

ngp∑
j=1

max [0, λgp,j(uk)]

+
1

kfinal + 1

kfinal∑
k=0

ng∑
j=1

max [0, λgj(uk)]

+
1

kfinal + 1

kfinal∑
k=0

nu∑
i=1

max
[
λ(uLi − uk,i), 0, λ(uk,i − uUi)

]
,

with λ > 0 a penalty coe�cient. So as not to introduce discrepancies due to
scaling, a scaled version of the above is employed in de�ning the metrics:

1

kfinal + 1

kfinal∑
k=0

φp(uk)− φp(u∗)
∆φmax

+
1

kfinal + 1

kfinal∑
k=0

ngp∑
j=1

max

[
0, λ

gp,j(uk)

gmaxp,j

]

+
1

kfinal + 1

kfinal∑
k=0

ng∑
j=1

max

[
0, λ

gj(uk)

gmaxj

]

+
1

kfinal + 1

kfinal∑
k=0

nu∑
i=1

max

[
λ
uLi − uk,i
uUi − uLi

, 0, λ
uk,i − uUi
uUi − uLi

]
,

with ∆φmax, gmaxp,j , and gmaxj all de�ned separately for each problem in such
a manner so as to give each function a range that is approximately equal to
unity. The value of λ is set to 1 for Metric 1, 10 for Metric 2, and 100 for Metric
3 to re�ect light, medium, and heavy penalties for violating the constraints,
respectively. In the case that a tested algorithm obtains a value of 9999 or
above for any of these metrics, which would correspond to dramatically poor
performance, the reported value is simply given as 9999 to indicate that this is
the case.

6

3.2 Metric 4: Number of Constraint Violations

Metric 4 simply counts the total number of constraint violations without provid-
ing any information on the degree of violation, and can take values ranging from
0 to (kfinal + 1)(ngp + ng + nu). This metric may be useful for those problems
where any violations are extremely undesirable.

3.3 Metrics 5-7: Suboptimality at the Final Experiment
with Penalty for Constraint Violations

Metrics 5-7 are similar to Metrics 1-3 but only consider the �nal experiment
and ignore the suboptimality or constraint violations that may have taken place
during the convergence process:

φp(ukfinal
)− φp(u∗)

∆φmax
+

ngp∑
j=1

max

[
0, λ

gp,j(ukfinal)

gmaxp,j

]

+

ng∑
j=1

max

[
0, λ

gj(ukfinal)

gmaxj

]

+

nu∑
i=1

max

[
λ
uLi − ukfinal,i
uUi − uLi

, 0, λ
ukfinal,i − uUi
uUi − uLi

]
.

Such a metric may be important for those applications where only the end
result is important, with the potential costs of actually getting there considered
to be negligible. As in Metrics 1-3, the penalty coe�cient λ is set as 1 for Metric
5, 10 for Metric 6, and 100 for Metric 7. The upper limit of 9999 is enforced
here as well when reporting the results of very poor performances.

3.4 Metrics 8-10: Number of Experiments Needed to Con-
verge within a Tolerance

Metrics 8-10 are de�ned as the number of experiments needed for the algorithm
to reduce the suboptimality of the initial experiment by a certain fraction and
to maintain all further experiments below that threshold. They are de�ned as
the lowest number of experiments, k̄, satisfying

k̄ : φp(uk)− φp(u∗) ≤ γ [φp(u0)− φp(u∗)] , ∀k ∈ [k̄, kfinal],

where γ is set as 0.5 for Metric 8, 0.3 for Metric 9, and 0.1 for Metric 10 to
represent 50%, 70%, and 90% convergence, respectively. In the case that no
k̄ satisfy the above condition, that particular realization is not included in the
averaged performance data, but the failure to converge within a tolerance in the
allotted kfinal experiments is nevertheless made known when the percentage of
realizations that converged (out of the 100 tested) is reported. These metrics
essentially re�ect the convergence speed of the algorithm.

3.5 Metric 11: Average Computation Time of Algorithm
per Iteration

Metric 11 reports the average time, in seconds, needed for the algorithm to carry
out its computations, i.e., the time needed to execute the line

7

1 [u (k+2 , :) , output] = a lgo (u , phiphat , gphat , sigmaphi , sigmag , uL ,uU,
algonum , input) ;

in algotest.m. This may be relevant for those applications where the experi-
ments are to be carried out at a high frequency and where fast computation is
desired.

4 Algorithms

The following algorithms are currently being tested, with the code for each
stored in the main algorithm �le (algo.m). The priority of each algorithm,
given as a score between 1 (lowest) and 10 (highest), determines the odds of
that algorithm being tested in a given trial - e.g., an algorithm with Priority 3
is three times less likely to be tested than an algorithm with Priority 9.

No Algorithm (nothing; algonum = 0)

This "algorithm" does not adapt the decision variables and simply keeps them
at u0 for all experiments. This is intended to provide a reference to the other
algorithms, so that one may have a general idea of how much is gained (or lost)
by attempting optimization.

SCFO Solver, Standard

The SCFO ("su�cient conditions for feasibility and optimality") solver is based
on as-of-yet unpublished theoretical work [1], with the initial version of the solver
released in May of 2013. The algorithms tested here correspond to all version
numbers starting with 0.91.1, and use the SCFO's standard implementation (as
opposed to the fast implementation - see below).

The SCFO �le, as well as all of the other �les it calls, should be downloaded
separately. A users' guide to explain how to use the solver and the theory
behind it is also available [2]. While the solver is designed to work in a model-
free setting, it may employ the user-provided models phimod.m and gmod.m

when they are available to assist in certain subroutines.

[1] G. A. Bunin, G. François, and D. Bonvin (2014). Feasible-side global con-
vergence in experimental optimization. Unpublished, arXiv [math.OC] 1406.4063.

[2] G. A. Bunin (2017). The SCFO Experimental Optimization Solver: Users'
Guide (version 0.91.3).

Version 0.91.1 (SCFOv7; algonum = 1)

Coded by: G. A. Bunin
Priority: see website

1 Wg = [] ;
2 f o r j = 1 : l ength (sigmag)
3 Wg{ j } = [0 sigmag (j) ^2] ;
4 end
5 i f e x i s t (' ph i eva l .m') == 2

8

http://ccapprox.info/expopt/algo.m
http://ccapprox.info/#soft
http://ccapprox.info/#soft
http://ccapprox.info/publications/SIAM2013v4.pdf
http://ccapprox.info/publications/SIAM2013v4.pdf
http://ccapprox.info/SCFO/SCFOug-V0_91_3.pdf
http://ccapprox.info/SCFO/SCFOug-V0_91_3.pdf
http://ccapprox.info/expopt/#algorithms

6 uopt = SCFO(u , [] , gphat , [] ,Wg, uL ,uU) ;
7 e l s e
8 uopt = SCFO(u , phiphat , gphat , [0 sigmaphi ^2] ,Wg, uL ,uU) ;
9 end

10 output = [] ;

Version 0.91.2 (SCFOv8; algonum = 1.01)

Coded by: G. A. Bunin
Priority: see website

1 Wg = [] ;
2 f o r j = 1 : l ength (sigmag)
3 Wg{ j } = [0 sigmag (j) ^2] ;
4 end
5 i f e x i s t (' ph i eva l .m') == 2
6 [uopt , exitcond , output] = SCFO0_91_2(u , [] , gphat , [] ,Wg, uL ,uU, input

) ;
7 e l s e
8 [uopt , exitcond , output] = SCFO0_91_2(u , phiphat , gphat , [0 sigmaphi

^2] ,Wg, uL ,uU, input) ;
9 end

Version 0.91.3 (SCFOv9; algonum = 1.02)

Coded by: G. A. Bunin
Priority: see website

1 Wg = [] ;
2 f o r j = 1 : l ength (sigmag)
3 Wg{ j } = [0 sigmag (j) ^2] ;
4 end
5 i f e x i s t (' ph i eva l .m') == 2
6 [uopt , exitcond , output] = SCFO0_91_3(u , [] , gphat , [] ,Wg, uL ,uU, input

) ;
7 e l s e
8 [uopt , exitcond , output] = SCFO0_91_3(u , phiphat , gphat , [0 sigmaphi

^2] ,Wg, uL ,uU, input) ;
9 end

SCFO Solver, Fast

This is the fast version of the SCFO solver (see above), and is essentially a
modi�cation of the standard version in that certain numerical routines are ap-
proximated to drastically reduce the solver's computational time. In terms of
implementation, only the solver settings need modi�cation.

9

http://ccapprox.info/expopt/#algorithms
http://ccapprox.info/expopt/#algorithms

Version 0.91.1 (SCFOv7f; algonum = 2)

Coded by: G. A. Bunin
Priority: see website

1 Wg = [] ;
2 f o r j = 1 : l ength (sigmag)
3 Wg{ j } = [0 sigmag (j) ^2] ;
4 end
5 i f e x i s t (' ph i eva l .m') == 2
6 uopt = SCFO(u , [] , gphat , [] ,Wg, uL ,uU

, [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , 1) ;
7 e l s e
8 uopt = SCFO(u , phiphat , gphat , [0 sigmaphi ^2] ,Wg, uL ,uU

, [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , 1) ;
9 end

10 output = [] ;

Version 0.91.2 (SCFOv8f; algonum = 2.01)

Coded by: G. A. Bunin
Priority: see website

1 Wg = [] ;
2 f o r j = 1 : l ength (sigmag)
3 Wg{ j } = [0 sigmag (j) ^2] ;
4 end
5 i f e x i s t (' ph i eva l .m') == 2
6 [uopt , exitcond , output] = SCFO0_91_2(u , [] , gphat , [] ,Wg, uL ,uU, input

, [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , 1) ;
7 e l s e
8 [uopt , exitcond , output] = SCFO0_91_2(u , phiphat , gphat , [0 sigmaphi

^2] ,Wg, uL ,uU, input
, [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , 1) ;

9 end

Version 0.91.3 (SCFOv9f; algonum = 2.02)

Coded by: G. A. Bunin
Priority: see website

1 Wg = [] ;
2 f o r j = 1 : l ength (sigmag)
3 Wg{ j } = [0 sigmag (j) ^2] ;
4 end
5 i f e x i s t (' ph i eva l .m') == 2
6 [uopt , exitcond , output] = SCFO0_91_3(u , [] , gphat , [] ,Wg, uL ,uU, input

, [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , 1) ;
7 e l s e
8 [uopt , exitcond , output] = SCFO0_91_3(u , phiphat , gphat , [0 sigmaphi

^2] ,Wg, uL ,uU, input
, [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , [] , 1) ;

9 end

10

http://ccapprox.info/expopt/#algorithms
http://ccapprox.info/expopt/#algorithms
http://ccapprox.info/expopt/#algorithms

Response Surface Optimization Following a Central Com-
posite Design (RSOCCD; algonum = 3)

Coded by: G. A. Bunin
Priority: see website
This algorithm is not iterative but is an algorithmic design procedure, as a cer-
tain number of prescribed experiments are conducted regardless of what results
they yield (i.e., in an open-loop matter), after which the resulting data is used to
build a quadratic-model approximation of the experimental optimization prob-
lem, which is then solved numerically to yield an approximation of the optimal
point. This point is then retained as the optimum for all following experiments.
A central composite design to generate the initial set is used as this is a fairly
popular and accepted procedure [1].

1 udoe = ccde s i gn (l ength (uL) , ' type ' , ' f aced ' , ' c en t e r ' , 1) ;
2 f o r i = 1 : l ength (uL)
3 f o r j = 1 : l ength (udoe (: , 1))
4 s e t = 0 ;
5 i f udoe (j , i) == −1
6 udoe (j , i) = uL(i) ;
7 s e t = 1 ;
8 end
9 i f udoe (j , i) == 0 && se t == 0

10 udoe (j , i) = 0 .5∗uL(i) + 0 .5∗uU(i) ;
11 s e t = 1 ;
12 end
13 i f udoe (j , i) == 1 && se t == 0
14 udoe (j , i) = uU(i) ;
15 end
16 end
17 end
18

19 i f l ength (phiphat) <= length (udoe (: , 1))
20 uopt = udoe (l ength (phiphat) , :) ;
21 e l s e i f l ength (phiphat) == length (udoe (: , 1))+1
22 X = u .^2 ;
23 comb = nchoosek (1 : l ength (uL) ,2) ;
24 f o r i = 1 : l ength (comb (: , 1))
25 X = [X u (: , comb(i , 1)) .∗u (: , comb(i , 2))] ;
26 end
27 X = [X u ones (l ength (phiphat) ,1)] ;
28 aphi = pinv (X) ∗phiphat ;
29 ag = [] ;
30 f o r j = 1 : l ength (sigmag)
31 ag (: , j) = pinv (X) ∗gphat (: , j) ;
32 end
33 l owcost = 1e6 ;
34 ubest = [] ;
35 f o r i = 1:100
36 urand = uL+rand (1 , l ength (uL)) . ∗ (uU−uL) ;
37 i f l ength (sigmag) > 0 | | e x i s t (' geva l .m') == 2
38 i f e x i s t (' ph i eva l .m') == 2
39 [ucand , fcand , e x i t f l a g] = fmincon (@phieval , urand

, [] , [] , [] , [] , uL ,uU,@(u) gdoe (u , ag) , opt imset (' d i sp ' , ' none ')) ;
40 e l s e
41 [ucand , fcand , e x i t f l a g] = fmincon (@(u) phidoe (u , aphi) ,

urand , [] , [] , [] , [] , uL ,uU,@(u) gdoe (u , ag) , opt imset (' d i sp ' , ' none '))
;

42 end
43 e l s e

11

http://ccapprox.info/expopt/#algorithms

44 i f e x i s t (' ph i eva l .m') == 2
45 [ucand , fcand , e x i t f l a g] = fmincon (@phieval , urand

, [] , [] , [] , [] , uL ,uU , [] , opt imset (' d i sp ' , ' none ')) ;
46 e l s e
47 [ucand , fcand , e x i t f l a g] = fmincon (@(u) phidoe (u , aphi) ,

urand , [] , [] , [] , [] , uL ,uU , [] , opt imset (' d i sp ' , ' none ')) ;
48 end
49 end
50 i f e x i t f l a g > 0 && fcand < lowcost
51 l owcost = fcand ;
52 ubest = ucand ;
53 end
54 end
55 i f isempty (ubest) == 1
56 uopt = u (1 , :) ;
57 e l s e
58 uopt = ubest ;
59 end
60 e l s e
61 uopt = u(l ength (udoe (: , 1)) +2 , :) ;
62 end
63 output = [] ;

The �les phidoe.m and gdoe.m complement this algorithm and act as the
functions needed for the optimization of the constructed data-driven model.
Note that this algorithm does not make use of a user-provided model even if the
latter is available.

[1] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook (2009). Re-
sponse Surface Methodology. John Wiley & Sons.

Brute Simplex Algorithm (SimplexB; algonum = 4)

Coded by: G. A. Bunin
Priority: see website
The simplex algorithm is a classic tool for nonlinear optimization, with the
version coded here essentially following the steps outlined in Section 2.4.1 of [1].

1 f o r i = 1 : l ength (uL)
2 s c a l e (i , 1) = 1/(uU(i)−uL(i)) ;
3 s c a l e (i , 2) = −uL(i) /(uU(i)−uL(i)) ;
4 u (: , i) = u (: , i) ∗ s c a l e (i , 1) + s c a l e (i , 2) ;
5 uL(i) = 0 ;
6 uU(i) = 1 ;
7 end
8 output = input ;
9

10 i f l ength (phiphat) < length (uL)+1
11 r e f i nd0 = f i nd (abs (phiphat−min(phiphat)) < 1e−6) ;
12 r e f i n d = r e f i nd0 (1) ;
13 ur e f = u(r e f i nd , :) ;
14 ob jva l = 1e32 ;
15 uopt = [] ;
16 s1 = 1 ;
17 whi le isempty (uopt) == 1
18 i = 1 ;
19 whi le i < 1000
20 du = randn (1 , l ength (uL)) ;
21 ut e s t = ur e f + s1 ∗ . 1∗du/norm(du , 2) ;

12

http://ccapprox.info/expopt/phidoe.m
http://ccapprox.info/expopt/gdoe.m
http://books.google.com/books/about/Response_Surface_Methodology.html?id=89oznEFHF_MC&redir_esc=y
http://books.google.com/books/about/Response_Surface_Methodology.html?id=89oznEFHF_MC&redir_esc=y
http://ccapprox.info/expopt/#algorithms

22 Uaug = [u ; u t e s t] ;
23 i f min (utest−uL) >= 0 && min(uU−ut e s t) >= 0 && cond (d i f f (

Uaug)) < ob jva l
24 ob jva l = cond (d i f f (Uaug)) ;
25 uopt = ute s t ;
26 end
27 i = i + 1 ;
28 end
29 s1 = .5∗ s1 ;
30 end
31 output . s imptes t = 0 ;
32 output . simpexpand = 0 ;
33 output . simpcont = 0 ;
34 output . s impshr ink = 0 ;
35 e l s e
36 de l t a = 0 . 5 ;
37 i f l ength (phiphat) == length (uL)+1
38 usub = u ;
39 phisub = phiphat ;
40 output . simpusub = usub ;
41 output . simpphisub = phisub ;
42 e l s e
43 usub = input . simpusub ;
44 phisub = input . simpphisub ;
45 end
46 s imptes t = input . s imptes t ;
47 simpexpand = input . simpexpand ;
48 simpcont = input . simpcont ;
49 s impshr ink = input . s impshr ink ;
50 [ph ipsort , s o r t o rd] = so r t (phisub) ;
51 i f s imptes t == 0
52 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
53 output . s imptes t = 1 ;
54 e l s e i f s imptes t == 1 && simpshr ink == 0
55 phipmin = input . simpphipmin ;
56 phipmax = input . simpphipmax ;
57 phipmax2 = input . simpphipmax2 ;
58 minind = input . simpminind ;
59 maxind = input . simpmaxind ;
60 ucen = input . simpucen ;
61 umax = input . simpumax ;
62 umin = input . simpumin ;
63 i f simpexpand == 0 && simpcont == 0
64 i f phiphat (end) >= phipmin && phiphat (end) < phipmax2
65 usub (maxind , :) = u(end , :) ;
66 phisub (maxind) = phiphat (end) ;
67 output . simpusub = usub ;
68 output . simpphisub = phisub ;
69 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
70 e l s e i f phiphat (end) < phipmin
71 f e a s = 0 ;
72 gamma0 = 2 ;
73 whi le f e a s == 0
74 uexp = gamma0∗u(end , :) +(1−gamma0) ∗ucen ;
75 i f min (uexp−uL) >= 0 && min(uU−uexp) >= 0
76 f e a s = 1 ;
77 uopt = uexp ;
78 e l s e
79 gamma0 = .5∗gamma0+.5;
80 end
81 end
82 output . simpexpand = 1 ;

13

83 e l s e i f phiphat (end) >= phipmax2
84 beta0 = 0 . 5 ;
85 i f phiphat (end) < phipmax
86 uopt = beta0 ∗u(end , :) +(1−beta0) ∗ucen ;
87 e l s e
88 uopt = beta0 ∗umax+(1−beta0) ∗ucen ;
89 end
90 output . simpcont = 1 ;
91 end
92 e l s e i f simpexpand == 1
93 i f phiphat (end) < phiphat (end−1)
94 usub (maxind , :) = u(end , :) ;
95 phisub (maxind) = phiphat (end) ;
96 output . simpusub = usub ;
97 output . simpphisub = phisub ;
98 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
99 e l s e

100 usub (maxind , :) = u(end−1 , :) ;
101 phisub (maxind) = phiphat (end−1) ;
102 output . simpusub = usub ;
103 output . simpphisub = phisub ;
104 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
105 end
106 output . simpexpand = 0 ;
107 e l s e i f simpcont == 1
108 i f phiphat (end−1) < phipmax
109 i f phiphat (end) <= phiphat (end−1)
110 usub (maxind , :) = u(end , :) ;
111 phisub (maxind) = phiphat (end) ;
112 output . simpusub = usub ;
113 output . simpphisub = phisub ;
114 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
115 e l s e
116 usub = de l t a ∗usub + (1−de l t a) ∗ ones (l ength (uL)+1 ,1)∗

umin ;
117 output . simpusub = usub ;
118 ushr ink = usub ;
119 ushr ink (minind , :) = [] ;
120 uopt = ushr ink (1 , :) ;
121 ushr ink (1 , :) = [] ;
122 i f l ength (ushr ink (: , 1)) > length (uL)
123 output . s impshr ink = 1 ;
124 output . s impushrink = ushr ink ;
125 output . s impshr ink ind = 1 ;
126 end
127 end
128 e l s e
129 i f phiphat (end) < phipmax
130 usub (maxind , :) = u(end , :) ;
131 phisub (maxind) = phiphat (end) ;
132 output . simpusub = usub ;
133 output . simpphisub = phisub ;
134 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
135 e l s e
136 usub = de l t a ∗usub + (1−de l t a) ∗ ones (l ength (uL)+1 ,1)∗

umin ;
137 output . simpusub = usub ;
138 ushr ink = usub ;
139 ushr ink (minind , :) = [] ;
140 uopt = ushr ink (1 , :) ;
141 ushr ink (1 , :) = [] ;
142 i f l ength (ushr ink (: , 1)) > length (uL)

14

143 output . s impshr ink = 1 ;
144 output . s impushrink = ushr ink ;
145 output . s impshr ink ind = 1 ;
146 end
147 end
148 end
149 output . simpcont = 0 ;
150 end
151 e l s e i f s impshr ink == 1
152 ushr ink = input . s impushrink ;
153 sh r ink ind = input . s impshr ink ind ;
154 minind = input . simpminind ;
155 i f sh r ink ind < minind
156 phisub (shr ink ind) = phiphat (end) ;
157 output . simpphisub = phisub ;
158 e l s e
159 phisub (shr ink ind+1) = phiphat (end) ;
160 output . simpphisub = phisub ;
161 end
162 sh r ink ind = shr ink ind + 1 ;
163 output . s impshr ink ind = shr ink ind ;
164 i f isempty (ushr ink) == 0
165 uopt = ushr ink (1 , :) ;
166 ushr ink (1 , :) = [] ;
167 i f l ength (ushr ink (: , 1)) > length (uL)
168 output . s impushrink = ushr ink ;
169 output . s impshr ink = 1 ;
170 end
171 e l s e
172 output . s impshr ink = 0 ;
173 [uopt , output] = simpsub (usub , phisub , uL ,uU, output) ;
174 end
175 end
176 end
177

178 f o r i = 1 : l ength (uL)
179 uopt (i) = (uopt (i)−s c a l e (i , 2)) / s c a l e (i , 1) ;
180 end

The �le simpsub.m is a required subroutine and should be downloaded. Note
that the algorithm uses scaled decision variables and generates the experiments
u1, . . . ,unu in a pseudo-random manner that ensures that the starting sim-
plex has relatively balanced geometry. More importantly, this version of the
algorithm is only applicable to problems with bound constraints only (Class 1
problems) and thus is only tested for this problem class. The adjective "brute"
is employed since this version of the algorithm does not attempt to account for
noise in the function values in any manner, and simply proceeds by using the
noisy measurements in the iterative simplex constructions. The algorithm does
not make use of user-provided models.

[1] J. C. Spall (2005). Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control. John Wiley & Sons.

Constraint Adaptation (ConAdapt; algonum = 5)

Coded by: G. A. Bunin
Priority: see website

15

http://ccapprox.info/expopt/simpsub.m
http://books.google.com/books?id=f66OIvvkKnAC&dq=simplex+algorithm+for+noisy+functions&source=gbs_navlinks_s
http://books.google.com/books?id=f66OIvvkKnAC&dq=simplex+algorithm+for+noisy+functions&source=gbs_navlinks_s
http://ccapprox.info/expopt/#algorithms

The constraint-adaptation [1], or bias-update [2], algorithm proceeds by adding
a zero-order correction term to the models of the experimental constraints and
then carrying out a model optimization to determine the next experiment. In
the algorithm as coded here, a �lter gain of 0.7 is used to dampen the corrections
slightly. This algorithm is applicable to Class 3 problems only and requires a
model.

1 i f l ength (u (: , 1)) == 1
2 eprev = ze ro s (1 , l ength (sigmag)) ;
3 e l s e
4 eprev = input . eprev ;
5 end
6 ecur = 0.3∗ eprev + 0 . 7∗ (gphat (end , :)−gmod(u(end , :))) ;
7 output . eprev = ecur ;
8 ubest = [] ;
9 u0 = u(end , :) ;

10 i = 1 ;
11 whi le max(gCA(u0 , ecur)) > 0 && i < 100
12 u0 = uL + rand (1 , l ength (u (1 , :))) . ∗ (uU−uL) ;
13 i = i + 1 ;
14 end
15 i f e x i s t (' ph i eva l .m') == 2
16 [ucand , fcand , e x i t f l a g] = pat t e rn sea r ch (@phieval , u0 , [] , [] , [] , [] ,

uL ,uU,@(u)gCA(u , ecur) , opt imset (' d i sp ' , ' none ')) ;
17 e l s e
18 [ucand , fcand , e x i t f l a g] = pat t e rn sea r ch (@(u)phimod (u) , u0

, [] , [] , [] , [] , uL ,uU,@(u)gCA(u , ecur) , opt imset (' d i sp ' , ' none ')) ;
19 end
20 i f e x i t f l a g > 0
21 ubest = ucand ;
22 end
23 i f isempty (ubest) == 1
24 uopt = u(end , :) ;
25 e l s e
26 uopt = ubest ;
27 end

The auxiliary �le gCA.m is required as it de�nes the constraints in the model
optimization. The version of the algorithm coded here uses the pattern search
algorithm of MATLAB to minimize the model.

[1] B. Chachuat, A. Marchetti, and D. Bonvin (2008). Process optimization via
constraints adaptation. J. Process Control, 18, 244-257.

[2] J. F. Forbes and T. E. Marlin (1994). Model accuracy for economic op-
timizing controllers: The bias update case. Ind. Eng. Chem. Res., 33(8),
1919-1929.

5 Test Problems and Results

The following are the test problems currently making up the database, together
with the performances obtained by the di�erent tested algorithms. To make
it easier to pair up problems with algorithms and to analyze the results, the
problems are broken up into three classes, with Class 1 problems denoting those
with only bound constraints, Class 2 problems as those with general numerical

16

http://ccapprox.info/expopt/gCA.m
http://www.sciencedirect.com/science/article/pii/S0959152407001138
http://www.sciencedirect.com/science/article/pii/S0959152407001138
http://pubs.acs.org/doi/pdf/10.1021/ie00032a006
http://pubs.acs.org/doi/pdf/10.1021/ie00032a006

constraints but no experimental constraints, and Class 3 problems being those
that possess experimental constraints.

• Class 1: P5.1, P5.7, P5.9;

• Class 2: P5.8, P5.10;

• Class 3: P5.3, P5.4, P5.5, P5.6, P5.11.

In reporting the metric values, both the average (left) and the standard
error (right) are given, with the plus-minus (±) sign used to separate the two.
For Metrics 8-10, which attempt to gauge convergence speed, the percentage
of the trials that achieved the speci�ed convergence is also given. In the case
that convergence was not achieved for any of the trials, the letters "NA" (not
available) are reported. Currently, testing is done automatically by dedicated
computers, with a maximum of 100 trials done for each testing combination
(generated by choosing the problem, the algorithm, and whether or not the
model is used).

You may view the plotted results for the individual trials for each algorithm
by clicking on the algorithm name in the "Name" column. For problems with
only two variables, plots of the experimental iterates in the decision-variable
space are given for particularly insightful illustrations � only their values are
plotted for problems with three or more variables. For plots of the decision-
variable space, green regions denote those that are feasible (where all constraints
are satis�ed), while red denotes the infeasible regions. Red dots denote the
individual experimental iterates, while the green dot denotes the true optimum
that the algorithm aims to �nd. Constant dotted lines are used to plot the
optimal values in the three-or-more variable case. For the cost function value
plots, the constant black line denotes the value at the true optimum.

Because the results are constantly being updated, they are not
reported directly in this .pdf version. Readers are requested to check
the website for the most up-to-date results.

5.1 Test Problem #1: Maximizing Pro�t in the Williams-
Otto Reactor

Original code provided by: S. Costello

Test File Specs: algotest([4.8 77],40,0.5,[],[3 70],[6 100],[4.79

89.7],100,[],[],algonum)

Main Files: phipeval.m (required), phimod.m (model)

Auxiliary Files: plantbalancesT.m (required), modelbalances2.m (model)

Problem Description: The Williams-Otto reactor is a continuously-stirred
tank reactor (CSTR) whose operation was originally formulated in the 1960
paper of Williams and Otto [1]. Since then, it has become a standard test
problem in the real-time optimization (RTO) research community, where the
objective is usually to maximize a steady-state pro�t function by varying both
the �ow rate of one of the feed components to the reactor and the reactor

17

http://www.ccapprox.info/expopt/#problems
http://ccapprox.info/expopt/1/phipeval.m
http://ccapprox.info/expopt/1/phimod.m
http://ccapprox.info/expopt/1/plantbalancesT.m
http://ccapprox.info/expopt/1/modelbalances2.m

temperature. The steady-state values that result are governed by the underlying
chemical dynamics of the system, described by the three reactions

A+B
k1−→C, k1 = 1.660× 106e−6666.7/(TR+273.15)

C +B
k2−→P + E, k2 = 7.212× 108e−8333.3/(TR+273.15)

C + P
k3−→G, k3 = 2.675× 1012e−11111/(TR+273.15)

and the corresponding rate laws, with TR denoting the temperature of the re-
actor. A model of this system that approximates the three reactions by two [2]
is assumed to be available:

A+ 2B
k∗1−→P + E, k∗1 = 2.189× 108e−8077.6/(TR+273.15)

A+B + P
k∗2−→G, k∗2 = 4.310× 1013e−12438/(TR+273.15).

With regard to speci�c problem parameters and the de�nition of the opti-
mization problem, the version of the problem recently reported in [3] is used
here, where the pro�t function is de�ned as

1143.38XP (FB , TR)(FA+FB)+25.92XE(FB , TR)(FA+FB)−76.23FA−114.34FB ,

with X denoting the steady-state concentrations of the di�erent chemical reac-
tants (all being innate functions of the decision variables) and F denoting the
feed rates of the A and B reactants. Noting that the decision-variable vector is
de�ned as u := (FB , TR) and that one should minimize the negative of the pro�t
when solving the problem in standard minimization form, the cost function is
stated as:

φp(u) := (−1143.38XP (u)− 25.92XE(u))(FA + u1) + 114.34u1.

The feed rate of B is constrained to be between 3 and 6 kg/s, while the tem-
perature is constrained to the 70-100 ◦C range. This leads to the experimental
optimization problem in standard form:

minimize
u

φp(u) := (−1143.38XP (u)− 25.92XE(u))(FA + u1) + 114.34u1

subject to 3 ≤ u1 ≤ 6
70 ≤ u2 ≤ 100.

[1] T. J. Williams and R. E. Otto (1960). A generalized chemical processing
model for the investigation of computer control. AIEE Trans., 79(5): 458-473.

[2] J. F. Forbes, T. E. Marlin, and J. F. MacGregor (1994). Model adequacy
requirements for optimizing plant operations. Comput. Chem. Eng., 18(6):
497-510.

[3] A. G. Marchetti (2013). A new dual modi�er-adaptation approach to itera-
tive process optimization with inaccurate models. Comput. Chem. Eng., 59(5):
89-100.

5.2 Test Problem #2: Maximizing Pro�t in the Williams-
Otto Reactor (Constrained)

Original code provided by: S. Costello

18

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6367296
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6367296
http://www.sciencedirect.com/science/article/pii/0098135493E0005T
http://www.sciencedirect.com/science/article/pii/0098135493E0005T
http://www.sciencedirect.com/science/article/pii/S0098135413000847
http://www.sciencedirect.com/science/article/pii/S0098135413000847

Test File Specs: algotest([3.5 72],40,0.5,5e-4,[3 70],[6 100],[4.97

84.3],100,.1,[],algonum)

Main Files: phipeval.m (required), gpeval.m (required), phimod.m (model),
gmod.m (model)

Auxiliary Files: plantbalancesT.m (required), modelbalances2.m (model)

Problem Description: This problem is taken from [1] and is an extension of
Test Problem #1 in that it adds an experimental constraint on the maximum
concentration of the product G,

XG(u) ≤ 0.08,

with the problem in standard form then becoming

minimize
u

φp(u) := (−1143.38XP (u)− 25.92XE(u))(FA + u1) + 114.34u1

subject to gp,1(u) := XG(u)− 0.08 ≤ 0
3 ≤ u1 ≤ 6
70 ≤ u2 ≤ 100.

[1] A. G. Marchetti (2013). A new dual modi�er-adaptation approach to itera-
tive process optimization with inaccurate models. Comput. Chem. Eng., 59(5):
89-100.

5.3 Test Problem #3: Minimizing the Batch Time of Polystyrene
Production

Original code provided by: G. François

Test File Specs: algotest([242.39 945.30],40,60,1e4,[50 600],[450

1000],[363.06 875.60],10000,1e6,[],algonum)

Main Files: phipeval.m (required), gpeval.m (required), phimod.m (model),
gmod.m (model)

Auxiliary Files: integstyrbis.m (required), linint.m (required)

Problem Description: This problem is a speci�c case of the case-study ex-
ample presented in [1], where the problem of �nding the optimal temperature
pro�le for a polymerization batch reactor is addressed. Instead of solving the
dynamic optimization problem, which is in�nite-dimensional and intractable,
the authors propose to break the pro�le into four pre-de�ned operating regimes
and to optimize the "switching times" between these, which results in a �nite-
dimensional experimental optimization problem. An ODE model is used to
simulate the actual dynamic behavior of the batch. The process has two major
requirements, with (a) 60% conversion of monostyrene to polysterene required
at the end of the batch, and (b) the molecular weight of the product at the end
of the batch needing to be at least 2 million grams per mole.

19

http://ccapprox.info/expopt/1/phipeval.m
http://ccapprox.info/expopt/2/gpeval.m
http://ccapprox.info/expopt/1/phimod.m
http://ccapprox.info/expopt/2/gmod.m
http://ccapprox.info/expopt/1/plantbalancesT.m
http://ccapprox.info/expopt/1/modelbalances2.m
http://www.sciencedirect.com/science/article/pii/S0098135413000847
http://www.sciencedirect.com/science/article/pii/S0098135413000847
http://ccapprox.info/expopt/3/phipeval.m
http://ccapprox.info/expopt/3/gpeval.m
http://ccapprox.info/expopt/3/phimod.m
http://ccapprox.info/expopt/3/gmod.m
http://ccapprox.info/expopt/3/integstyrbis.m
http://ccapprox.info/expopt/3/linint.m

In the particular case presented here, the batch is set to terminate as soon
as 60% conversion is reached, with the goal being to �nd the temperature pro-
�le that minimizes the batch time, tb, while satisfying the molecular weight
constraint, M(u) ≥ 2 · 106. Only the �rst two switching times are used as opti-
mization variables, with the �rst switching time constrained to vary between 50
and 450 seconds and the second between 600 and 1000 seconds. The resulting
experimental optimization problem is then stated as

minimize
u

φp(u) := tb(u)

subject to gp,1(u) := −M(u) + 2 · 106 ≤ 0
50 ≤ u1 ≤ 450
600 ≤ u2 ≤ 1000.

A model with errors in two of the parameters (kp0 and ktr,M0 , as suggested
in [1]) is assumed to be available.

[1] G. François, B. Srinivasan, and D. Bonvin (2005). Use of measurements for
enforcing the necessary conditions of optimality in the presence of constraints
and uncertainty. J. Process Control, 15(6): 701-712.

5.4 Test Problem #4: Maximizing Electrical E�ciency in
a Solid Oxide Fuel Cell Stack

Original code provided by: A. Gopalakrishnan

Test File Specs: algotest([2e-3 7e-3 26],60,6e-4,[0.1 0.1 1e-3 0.03],[1e-3

1.5e-3 1],[1e-2 3.5e-2 30],[1e-3 1.898e-3 23.6687],.1,[50 50 .1 50],[.01

.01 .01],algonum)

Main Files: phipeval.m (required), gpeval.m (required), geval.m (re-
quired), phimod.m (model), gmod.m (model)

Auxiliary Files: model_real.m (required), stack.m (required), model.m
(model)

Problem Description: This problem is derived from the simulated case
study reported in [1], where the goal is to maximize the electrical e�ciency
of a 5-cell solid oxide fuel cell stack, denoted by η, by manipulating the mo-
lar in�ow of the fuel, the molar in�ow of the air, and the current, assigned
respectively as u1, u2, and u3.

A number of constraints are imposed to ensure healthy operating conditions
for the stack. The �rst two experimental constraints de�ne the desired operating
temperature range of the stack, 1003K ≤ T (u) ≤ 1073K. Additionally, the cell
voltages - assumed here to be identical - must be kept above 0.7V as operating
below this limit has been shown to lead to signi�cantly faster cell degradation.
This constraint is written as Ucell(u) ≥ 0.7. Finally, the last experimental
constraint is on the power produced, which here is required to be at least 80W.
Contrary to the study in [1], where it was formulated as an equality constraint,
here it is formulated as the inequality Pel(u) ≥ 80. Little is lost with this
reformulation, since there are no signi�cant drawbacks from producing more
power than required (apart from ine�ciency, which the optimization should

20

http://www.sciencedirect.com/science/article/pii/S0959152405000235
http://www.sciencedirect.com/science/article/pii/S0959152405000235
http://www.sciencedirect.com/science/article/pii/S0959152405000235
http://ccapprox.info/expopt/4/phipeval.m
http://ccapprox.info/expopt/4/gpeval.m
http://ccapprox.info/expopt/4/geval.m
http://ccapprox.info/expopt/4/phimod.m
http://ccapprox.info/expopt/4/gmod.m
http://ccapprox.info/expopt/4/model_real.m
http://ccapprox.info/expopt/4/stack.m
http://ccapprox.info/expopt/4/model.m

eliminate), and it is advantageous as it allows for the problem to be cast in the
standard (inequality-only) form.

To avoid oxidation of the anode, an upper limit of 0.7 is set on the fuel
utilization. This limitation is equivalent to the numerical constraint 5u3

2Fu1
≤

0.7, with F denoting the Faraday constant. To make this constraint easier for
optimization algorithms to handle, it is reformulated into the equivalent linear
form 5u3

2F ≤ 0.7u1, which is permissible since u1, a molar in�ow, must always
be positive. Limitations are also placed on the air-to-fuel ratio of in�ows, with
3 ≤ 2u2

u1
≤ 7. These may also be reformulated into linear constraints to yield

3u1 ≤ 2u2 and 2u2 ≤ 7u1.
A lower limit on the molar in�ow of the fuel is set as 0.001mol

s to avoid fuel
starvation. Note that this is twice the lower bound used in [1] - the reason being
that the simulated reality model provided has been noted to return imaginary
values for certain conditions with lower molar in�ows. An upper limit of 0.01mol

s
is used as a su�ciently high value that one does not expect to be attained (no
upper limit is speci�ed in [1]). For the air molar in�ow, implicit lower and
upper limits resulting from the air-to-fuel ratio constraints are used, with the
values of 0.0015mol

s and 0.035mol
s , respectively. The current is constrained to

vary between 1A and 30A, the latter being a limit imposed in [1].
Combining all of these speci�cations �nally leads to the experimental opti-

mization problem in standard form:

minimize
u

φp(u) := −η(u)

subject to gp,1(u) := −T (u) + 1003 ≤ 0
gp,2(u) := T (u)− 1073 ≤ 0
gp,3(u) := −Ucell(u) + 0.7 ≤ 0
gp,4(u) := −Pel(u) + 80 ≤ 0
g1(u) := 5u3

2F − 0.7u1 ≤ 0
g2(u) := 3u1 − 2u2 ≤ 0
g3(u) := 2u2 − 7u1 ≤ 0
0.001 ≤ u1 ≤ 0.01
0.0015 ≤ u2 ≤ 0.035
1 ≤ u3 ≤ 30.

A model, as given in [1], is assumed to be available.

[1] A. Marchetti, A. Gopalakrishnan, B. Chachuat, D. Bonvin, L. Tsikonis, A.
Nakajo, Z. Wuillemin, and J. Van herle (2011). Robust real-time optimization
of a solid oxide fuel cell stack. J. Fuel Cell Sci. Technol., 8(5): 1-11.

5.5 Test Problem #5: Minimizing the Overall Pumping
E�ort in the "Trois Bacs"

Original code provided by: G. A. Bunin

Test File Specs: algotest([6 6.2],40,0,[0.2 0.2 0.2 0.2 0.2 0.2],[0

0],[8 8],[4.9481 4.4160],40,[20 20 20 20 20 20],[],algonum)

Main Files: phieval.m (required), gpeval.m (required), gmod.m (model)

21

http://fuelcellscience.asmedigitalcollection.asme.org/article.aspx?articleid=1472319
http://fuelcellscience.asmedigitalcollection.asme.org/article.aspx?articleid=1472319
http://ccapprox.info/expopt/5/phieval.m
http://ccapprox.info/expopt/5/gpeval.m
http://ccapprox.info/expopt/5/gmod.m

Problem Description: This problem is derived from the experimental test-
ing set-up in the Laboratoire d'Automatique of the École Polytechnique Fédérale
de Lausanne (EPFL) in Lausanne, Switzerland. While the problem does not
present an industrial application, it is nevertheless considered to be a good
problem for testing since it involves the optimal operation of an experimental
system. A more detailed account is available in [1].

This simple set-up consists of three water tanks joined together, with water
being pumped into the leftmost and rightmost ones by controlling the voltages
of the two pumps. The test problem adopted here, much like the one outlined in
[1], aims at maintaining the water levels in the three tanks within the acceptable
ranges of 5 to 30 cm, while minimizing the overall pumping e�ort, represented
by the sum of squares of the two voltages.

The heights, denoted by h1, h2, and h3, correspond to the steady-state
solution for a system of nonlinear equations for a given set of voltages and are
thus experimental functions of the voltages. Letting the voltages be the decision
variables u1 and u2, and noting that they are constrained to lie between 0 and
8 V, the resulting experimental optimization problem is stated as:

minimize
u

φ(u) := u2
1 + u2

2

subject to gp,1(u) := 5− h1(u) ≤ 0
gp,2(u) := 5− h2(u) ≤ 0
gp,3(u) := 5− h3(u) ≤ 0
gp,4(u) := h1(u)− 30 ≤ 0
gp,5(u) := h2(u)− 30 ≤ 0
gp,6(u) := h3(u)− 30 ≤ 0
0 ≤ u1 ≤ 8
0 ≤ u2 ≤ 8.

The real experimental system is simulated by using the model provided in [1].
A model of the experimental system is assumed to be available and is obtained
by perturbing the parameters of the model of [1] by 10%.

[1] A. Marchetti (2009). Modi�er-adaptation methodology for real-time opti-
mization. Ph. D. Thesis, EPFL (p. 120-123).

5.6 Test Problem #6: Maximizing Production in a Con-
tinuous Stirred-Tank Reactor

Original code provided by: G. A. Bunin

Test File Specs: algotest([14.52 14.9],40,0.1,[0.03 0.03],[1 1],[50

50],[17.2 30.3],10,[1 1],[],algonum)

Main Files: phipeval.m (required), gpeval.m (required), phimod.m (model),
gmod.m (model)

Problem Description: This problem is derived from the case study example
of [1], and seeks to maximize the steady-state production of the product C in a
continuous stirred-tank reactor with the reactions

A+B → C
2B → D.

22

http://infoscience.epfl.ch/record/138485/files/EPFL_TH4449.pdf
http://infoscience.epfl.ch/record/138485/files/EPFL_TH4449.pdf
http://ccapprox.info/expopt/6/phipeval.m
http://ccapprox.info/expopt/6/gpeval.m
http://ccapprox.info/expopt/6/phimod.m
http://ccapprox.info/expopt/6/gmod.m

The decision variables of the problem are the feed rates of reactants A and
B, denoted by u1 and u2, respectively, both of which are maintained between
1 and 50 liters per minute. The steady-state concentrations cA, cB , cC , and cD
are obtained from the steady-state equations

0 = −k1cAcB + u1

V cA,in −
u1+u2

V cA

0 = −k1cAcB − 2k2c
2
B + u2

V cB,in −
u1+u2

V cB

0 = k1cAcB − u1+u2

V cC

0 = k2c
2
B −

u1+u2

V cD,

with the parameters k1, k2, V , cA,in, and cB,in de�ned as in [1]. The steady-
state cost to be minimized is the quantity

0.004(u2
1 + u2

2)− c2C(u1 + u2)2

u1cA,in
,

which seeks to maximize the production of C while penalizing the control action.
A constraint on maximal heat generation, Q ≤ 110kcal, is also introduced,

with the steady-state value of Q de�ned as

Q = −V (k1cAcB∆Hr,1 + k2c
2
B∆Hr,2),

with the parameters ∆Hr,1 and ∆Hr,2 �xed as in [1]. A second constraint on
the molar fraction of D is also included as

cD
cA + cB + cC + cD

≤ 0.1.

Scaling the constraint functions, noting that the steady-state concentrations
are implicit functions of u, and placing the problem in standard form then leads
to the following experimental optimization problem:

minimize
u

φp(u) := 0.004(u2
1 + u2

2)− cC(u)2(u1+u2)2

u1cA,in

subject to gp,1(u) := Q(u)
110 − 1 ≤ 0

gp,2(u) := 10 cD(u)
cA(u)+cB(u)+cC(u)+cD(u) − 1 ≤ 0

1 ≤ u1 ≤ 50
1 ≤ u2 ≤ 50.

A model of the experimental system is assumed to be available and is ob-
tained by using di�erent values for the parameters k1, k2, and cA,in, as done in
[1].

[1] G. François and D. Bonvin (2013). Use of convex model approximations for
real-time optimization via modi�er adaptation. Ind. Eng. Chem. Res., 52(33):
11614-11625.

5.7 Test Problem #7: Maximizing Production in a Batch
Reactor with a Reversible Reaction

Original code provided by: G. A. Bunin

Test File Specs: algotest([0 0],40,0.01,[],[-1 -1],[1 1],[-0.2884

-1],0.1,[],[],algonum)

Main Files: phipeval.m (required), phimod.m (model)

23

http://pubs.acs.org/doi/abs/10.1021/ie3032372
http://pubs.acs.org/doi/abs/10.1021/ie3032372
http://ccapprox.info/expopt/7/phipeval.m
http://ccapprox.info/expopt/7/phimod.m

Problem Description: This problem is taken from the case study example
of [1], where the reversible reaction

A
k1

k2
B

is carried out in a batch reactor, with the goal of maximizing the end-time
production of B, or the concentration cB,end. The task of the user is to �nd
the optimal temperature pro�le, constrained to lie between 293K and 323K,
that achieves this goal. As �nding an entire pro�le is an in�nite-dimensional
problem, the author proposes a polynomial parameterization of the pro�le:

T (τ) = 308 + 15[a1 + a2(1− 2τ)],

where the coe�cients a1 and a2 essentially become the decision variables, with τ
being the normalized time, de�ned as the time divided by the total batch time,
the latter �xed here as 2.5 hours. From this de�nition, it may be shown that
the constraints on the temperature will be met if and only if the constraints
−1 ≤ a1 ± a2 ≤ 1 hold. So as to simplify this problem to a minimization with
only bound constraints, the following choice of decision variables is used

u1 = a1 + a2, u2 = a1 − a2,

with the bound constraints −1 ≤ u1 ≤ 1, −1 ≤ u2 ≤ 1 equivalent to −1 ≤
a1 ± a2 ≤ 1.

The experimental optimization problem in standard form then reads as:

minimize
u

φp(u) := −cB,end(u)

subject to −1 ≤ u1 ≤ 1
−1 ≤ u2 ≤ 1.

A model of the experimental system is assumed to be available and is ob-
tained by using di�erent values for the parameters that may be subject to error
[1].

[1] C. Georgakis (2009). A model-free methodology for the optimization of batch
processes: Design of dynamic experiments. 7th IFAC International Symposium
on Advanced Control of Chemical Processes (ADCHEM), Istanbul: 644-649.

5.8 Test Problem #8: Maximizing Production in a Fed-
Batch Reactor with Three Reactions

Original code provided by: G. A. Bunin

Test File Specs: algotest([0 0 0],60,0.01,[],[-1 -0.5 -1.5],[1 0.5

1.5],[0.1953 0.3770 -1.0027],0.1,[],[1 1 1 1],algonum)

Main Files: phipeval.m (required), geval.m (required), phimod.m (model)

24

http://engineering.tufts.edu/chbe/people/georgakis/CPC2012_Ref85.pdf
http://engineering.tufts.edu/chbe/people/georgakis/CPC2012_Ref85.pdf
http://ccapprox.info/expopt/8/phipeval.m
http://ccapprox.info/expopt/8/geval.m
http://ccapprox.info/expopt/8/phimod.m

Problem Description: This problem is a slightly modi�ed version of the
problem presented in [1], where the reactions

A+B
k1→ C

2B
k2→ D

C
k3→ E

take place in a fed-batch reactor, the reactant B being fed continuously over the
course of the batch. The goal of the process is to �nd the feeding pro�le that
maximizes the amount of C produced at the end of the batch (cC,end). So as to
avoid solving an in�nite-dimensional optimization problem, the author proposes
a parameterization that uses the �rst decision variable, u1, to de�ne (in hours)
the total batch time:

tb = 1 + 0.5u1,

with u1 constrained to lie between −1 and 1. Another two decision variables,
u2 and u3, are then used to de�ne the feeding pro�le by the polynomial

v(τ) = 30(1− τ)
(
1 + 2

3ω(τ)
)

ω(τ) = 6u3τ
2 + (2u2 − 6u3)τ − 2u2,

with τ being the normalized time, de�ned as the time divided by the total batch
time. So as to ensure that the pro�le meet certain required restrictions, the
constraints −1 ≤ ω(τ) ≤ 1, ∀τ ∈ [0, 1] are imposed. The additional constraints
−1.5 ≤ 4u2 + 3u3 ≤ 1.5 are also introduced so as to ensure that the amount of
B fed is between 10 and 20 gram-moles.

Because ω(τ) achieves the value of −2u2 for τ = 0, it follows that any
u2 6∈ [−0.5, 0.5] will lead to a violation of the pro�le constraints, and so these
limits may be imposed as the bounds on u2. For u3, the limits −1.5 ≤ u3 ≤ 1.5
are chosen heuristically, as all tested pro�les with values outside this range
violated the constraints, and so it seems unlikely that the optimum would lie
outside this range.

The experimental optimization problem that results is then written, in stan-
dard form, as

minimize
u

φp(u) := −cC,end(u)

subject to g1(u) := max
τ∈[0,1]

ω(τ,u)− 1 ≤ 0

g2(u) := −1− min
τ∈[0,1]

ω(τ,u) ≤ 0

g3(u) := 4u2 + 3u3 − 1.5 ≤ 0
g4(u) := −4u2 − 3u3 − 1.5 ≤ 0
−1 ≤ u1 ≤ 1
−0.5 ≤ u2 ≤ 0.5
−1.5 ≤ u3 ≤ 1.5.

A model of the experimental system is assumed to be available and is ob-
tained by using di�erent values for k1, k2, and k3.

[1] G. M. Troup and C. Georgakis (2013). Process systems engineering tools in
the pharmaceutical industry. Comput. Chem. Eng., 51(5): 157-171.

25

http://www.sciencedirect.com/science/article/pii/S0098135412001901
http://www.sciencedirect.com/science/article/pii/S0098135412001901

5.9 Test Problem #9: Batch-to-Batch Tuning of a Temperature-
Tracking Model-Predictive Controller

Original code provided by: G. A. Bunin

Test File Specs: algotest([0 0.7],40,0.1,[],[-2 0],[2 1],[0.9492

0.6416],1,[],[],algonum)

Main Files: phipeval.m (required), phimod.m (model)

Problem Description: The tuning of a model-predictive controller (MPC)
in the experimental water-tank system described in [1] is addressed. The run-
to-run iterative controller tuning strategy as outlined in [2] is pursued, with the
problem here being a modi�ed, simulated version of the �rst experimental case
study of [2]. The MPC controller is tuned by modifying two parameters - the
logarithm of the output tracking weight and the bias-update �lter gain - with
the desired objective being to minimize the sum of the norms of the tracking
error and the aggressiveness of the control action during the batch pro�le where
the controller follows a preset temperature pro�le. The performance metric is
denoted by the implicit function J(u) and is measured at the end of each batch.

The programmed MPC uses a dynamic matrix control strategy to compute
an optimal control action to track the preset tank temperature pro�le, with the
temperature of the water fed to the jacket surrounding the tank used as the
control variable. In calculating the control action, the MPC is provided the
(inaccurate) linear model

G(s) =
0.2

2s2 + s+ 0.2
,

while the true dynamic experimental system, also assumed linear, behaves ac-
cording to the law

Gp(s) =
0.84s+ 0.315

s3 + 3.993s2 + 4.157s+ 0.326
.

So as to add some realism to the problem in the form of output measurement
noise but without adding an intrinsic stochastic element into the de�nition of J ,
the dynamic measurements used by the controller in computing the bias update
are corrupted by an alternating sequence ±0.1, which acts like zero-mean noise
but is deterministic.

The output weight of the MPC objective function is allowed to vary between
0.01 and 100, which leads to −2 ≤ u1 ≤ 2, while the bias-update �lter gain is
naturally �xed between zero and unity, leading to 0 ≤ u2 ≤ 1. The resulting
experimental optimization problem is stated as

minimize
u

φp(u) := J(u)

subject to −2 ≤ u1 ≤ 2
0 ≤ u2 ≤ 1.

The available model of the experimental system is obtained by settingGp(s) =
G(s) when simulating the batch behavior (i.e., by assuming a perfect dynamic
model).

26

http://ccapprox.info/expopt/9/phipeval.m
http://ccapprox.info/expopt/9/phimod.m

[1] G. A. Bunin, F. V. Lima, C. Georgakis, and C. M. Hunt (2010). Model
predictive control and dynamic operability studies in a stirred tank: rapid tem-
perature cycling for crystallization. Chem. Eng. Commun., 197(5): 733-752.

[2] G. A. Bunin, G. François, and D. Bonvin (2013). A real-time optimization
framework for the iterative controller tuning problem. Processes, 1(2): 203-
237.

5.10 Test Problem #10: Iterative Tuning of a Fixed-Order
Controller in a Torsional System

Original code provided by: G. A. Bunin

Test File Specs: algotest([1 2.77 -2.6 1 0.5],100,0.001,[],[0 0 -5

-2 -1],[5 5 5 2 1],[4.812 0.3826 -2.9531 0.1292 -0.5116],0.05,[],[2

2],algonum)

Main Files: phipeval.m (required), geval.m (required), phimod.m (model)

Problem Description: This problem is concerned with the tuning of a �xed-
order controller for the torsional system [1] located in the Laboratoire d'Automa-
tique of the École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne,
Switzerland, and is derived from the second case study reported in [2]. The
control system considered is single-input-single-output (SISO), with the voltage
of the motor acting as the input variable to control the angular position of the
top of the torsional system's three disks. The dynamic law relating the change
in disk position and the change in motor voltage was obtained by experimental
identi�cation in the laboratory, performed by Z. Eme�i and A. Nicoletti, with
the linear transfer function describing the system chosen as

G1(z) =
0.0011z4 − 0.0012z3 + 0.0038z2 − 0.0009z

z6 − 4.814z5 + 10.47z4 − 13.22z3 + 10.21z2 − 4.579z + 0.928
,

with a sampling time of 0.04 seconds. A model for a slightly di�erent con�gu-
ration, with a greater load placed on the top disk, was also obtained as

G2(z) =
0.0004z4 + 0.0015z3 + 0.0036z2 − 0.0008z

z6 − 4.651z5 + 9.935z4 − 12.47z3 + 9.678z2 − 4.413z + 0.924
.

The controller is tasked with following a periodic sinusoidal pro�le that re-
peats itself every 20 seconds, allowing for the controller parameters to be re-
tuned between periods so as to achieve better performance. The controller
employed is a �xed-order controller with 5 degrees of freedom that act as the
decision variables:

K(z) =
u1z

2 + u2z + u3

z2 + u4z + u5
,

with the full closed-loop transfer function then being given by K(z)G1(z)
1+K(z)G1(z) for the

real system and by K(z)G2(z)
1+K(z)G2(z) for the model. The metric by which controller

performance is judged and which is to be minimized, denoted by J , is de�ned as

27

http://www.tandfonline.com/doi/abs/10.1080/00986440903288096#.VInmbuK3H74
http://www.tandfonline.com/doi/abs/10.1080/00986440903288096#.VInmbuK3H74
http://www.tandfonline.com/doi/abs/10.1080/00986440903288096#.VInmbuK3H74
http://www.mdpi.com/2227-9717/1/2/203
http://www.mdpi.com/2227-9717/1/2/203
http://ccapprox.info/expopt/10/phipeval.m
http://ccapprox.info/expopt/10/geval.m
http://ccapprox.info/expopt/10/phimod.m

the average absolute tracking error during a single period. In the case that the
magnitude of the output value goes over twice the amplitude of the setpoint, the
output is saturated at this boundary for the rest of the time period. Physically,
this may be seen as locking the system once the controller strays too far from
the setpoint, which generally is a sign of instability and would lead to very large
cost function values if allowed.

The search for the optimal controller is restricted to those controllers that
are stable, which, following a Jury analysis [2], leads to the following constraints
on the parameters that de�ne the controller poles:

−1 ≤ u5 ≤ 1, −1 + u2
5 ≤ u4 − u4u5 ≤ 1− u2

5.

The bound constraints are chosen as 0 ≤ u1 ≤ 5, 0 ≤ u2 ≤ 5, −5 ≤
u3 ≤ 5, −2 ≤ u4 ≤ 2, −1 ≤ u5 ≤ 1, the latter two following implicitly from
the constraints on controller stability and the others being chosen heuristically
for this problem in particular - typically, the domains of tuning parameters
in controller tuning are not clearly �xed, but they are �xed here to make the
problem compatible with the database.

The resulting experimental optimization problem, in standard form, becomes

minimize
u

φp(u) := J(u)

subject to g1(u) := u4 − u4u5 − 1 + u2
5 ≤ 0

g2(u) := −u4 + u4u5 − 1 + u2
5 ≤ 0

0 ≤ u1 ≤ 5
0 ≤ u2 ≤ 5
−5 ≤ u3 ≤ 5
−2 ≤ u4 ≤ 2
−1 ≤ u5 ≤ 1.

[1] Educational Control Products (2008). Manual for Model 205/205a: Tor-
sional Control System.

[2] G. A. Bunin, G. François, and D. Bonvin (2013). A real-time optimization
framework for the iterative controller tuning problem. Processes, 1(2): 203-
237.

5.11 Test Problem #11: Minimizing the Steady-State Pro-
duction Cost of a Gold Cyanidation Leaching Process

Original code provided by: Zhang Jun

Test File Specs: algotest([52 18],40,2,.001,[10 5],[80 20],[31.0563

11.6218],200,.04,[],algonum)

Main Files: phipeval.m (required), gpeval.m (required), phimod.m (model),
gmod.m (model)

Auxiliary Files: model_single.m (required)

28

http://www.ecpsystems.com/controls_torplant.htm
http://www.ecpsystems.com/controls_torplant.htm
http://www.mdpi.com/2227-9717/1/2/203
http://www.mdpi.com/2227-9717/1/2/203
http://ccapprox.info/expopt/11/phipeval.m
http://ccapprox.info/expopt/11/gpeval.m
http://ccapprox.info/expopt/11/phimod.m
http://ccapprox.info/expopt/11/gmod.m
http://ccapprox.info/expopt/11/model_single.m

Problem Description: A slightly adapted version of the gold cyanidation
leaching optimization problem presented in [1] is used here. The process itself
is described as a continuous stirred tank reactor with the reactions

2Au +O2 + 4CN− + 2H2O → 2[Au(CN)2]− + 2OH− +H2O2,
2Au + 4CN− +H2O2 → 2[Au(CN)2]− + 2OH−,

with gold ore and sodium cyanide being the two feed components. The steady
state of the process is then characterized by the equations

Qs
Ms

(Cs,0 − Cs)− rAu = 0,

Ql
Ml

(Cl,0 − Cl) +
Ms

Ml
rAu = 0,

Ql
Ml

(Ccn,0 − Ccn) +
Qcn
Ml
− rcn = 0,

rAu = k1

[
Cs − Cs,∞(d)

]k2
Ck3cnC

k4
o ,

rcn = k5C
k6
cn ,

where k1, k2, k3, k4, k5, k6 denote the kinetic model parameters. The quantities
Qs, Ql, Qcn denote (respectively) the �ow rates of the gold ore, the liquid in the
gold feed, and the sodium cyanide. The quantities Ms,Ml denote the holdups
in the gold ore and liquid in the leaching tank, respectively. The letter C
denotes the corresponding concentrations, with Cs,∞(d) in particular denoting
the residual gold concentration in the ore, a function of the average particle
diameter d:

Cs,∞(d) = 0.357(1− 1.49e−0.0176d).

The concentration of the dissolved oxygen in the liquid, Co, can be controlled
and is chosen as one of the decision variables, together with the �ow rate of the
sodium cyanide � i.e., u = (Qcn, Co). The decision-variable domain is restricted
by the limits 10kg/h ≤ Qcn ≤ 80kg/h and 5mg/kg ≤ Co ≤ 20mg/kg, where it is
noted that the limits on Qcn have been slightly compressed from those given in
[1] to avoid those parts of the decision-variable space where the solution clearly
does not lie or where operating the process would be extremely expensive due
to the cost function rising towards extremely large values.

The steady-state production cost, given in Chinese RMB per hour, is de�ned
as

(u1 + Ccn,0Ql)Pcn +QlCcn(u)Pcn,d +Qlu2Po +QsCs(u)PAu,

with P denoting the di�erent price factors.
Additionally, it is desired that the gold recovery be at least 75%, which is

expressed by the experimental constraint

Cs,0 − Cs(u)

Cs,0
≥ 0.75.

Combining all of these speci�cations then yields the experimental optimiza-
tion problem:

29

minimize
u

φp(u) := (u1 + Ccn,0Ql)Pcn +QlCcn(u)Pcn,d +Qlu2Po +QsCs(u)PAu

subject to gp,1(u) :=
Cs(u)− Cs,0

Cs,0
+ 0.75 ≤ 0

10 ≤ u1 ≤ 80
5 ≤ u2 ≤ 20.

The model of the simulated problem is obtained by applying a 10% error to
the kinetic parameters k1, k2, k3, k4, k5, k6.

[1] Z. Jun, M. Zhizhong, J. Runda (2015). Real-time optimization based on
SCFO for gold cyanidation leaching process. Chem. Eng. Sci., 134: 467-476.

6 Submit Problem/Algorithm

Researchers who have previously simulated experimental optimization problems
are highly encouraged to submit their examples to this database, as every new
problem bene�ts the community by enlarging the test domain of the di�erent
tested algorithms. The only rules for submission are that your problem should
be placable in the standard form

minimize
u

φp(u)

subject to gp,j(u) ≤ 0, j = 1, . . . , ngp
gj(u) ≤ 0, j = 1, . . . , ng
uLi ≤ ui ≤ uUi , i = 1, . . . , nu

and that it be based on a real-world case study (and is not just a constructed
mathematical example). Please write to gene.a.bunin@ccapprox.info if you
have a submission request, as this process is not automated.

You are also welcome to submit new algorithms, or to submit re�ned versions
of already stored ones � in the latter case, you may choose to keep the old
version(s) or to only provide test results for the latest version if you feel this
to be the best or most representative. The only rule is that the algorithm be
compatable with the testing code used here � i.e., that it can be incorporated into
the main algorithm �le in a manner that yields a new set of decision variables
when the command

1 [u (k+2 , :) , output] = a lgo (u , phiphat , gphat , sigmaphi , sigmag , uL ,uU,
algonum , input) ;

is executed. Not all algorithms are applicable to all classes of problems, and
so your algorithm will be tested for those problem classes that it is applicable
for. There is no need for you to test it yourself, although you are more than
welcome to do so if you want to verify that the results reported here are correct
(all of the code necessary for testing being provided). As with the test problems,
researchers are highly encouraged to submit their algorithms, whether they be
performant or not, as this will help in deciphering the links between algorithmic
characteristics and performances for di�erent metrics and problem types. It is
important as well to keep in mind that this is not a competition, though some

30

http://www.sciencedirect.com/science/article/pii/S0009250915003449
http://www.sciencedirect.com/science/article/pii/S0009250915003449
mailto:gene.a.bunin@ccapprox.info
http://ccapprox.info/expopt/algo.m

competitive spirit as we try to collectively write better and better algorithms is
certainly encouraged. To submit your algorithm, please mail its code, together
with a basic algorithm description, to gene.a.bunin@ccapprox.info. This
is not a single-step submission process, however, and additional interaction to
�nalize the algorithm details will follow.

Finally, all of the algorithms considered here are open-source and available
for use/modi�cation by any user of the database. Commercial algorithms are
not accepted for testing as they are inaccessible to the general user.

7 Update Log

February 22, 2017

Version 0.91.3 of the SCFO Solver added to the list of algorithms.

January 10, 2016

Version 0.91.2 of the SCFO Solver added to the list of algorithms. Testing
�les for the database modi�ed to remove dlmread and dlmwrite routines. The
ExpOpt database upgrades to Version 1.3.

June 8, 2015

Test Problem #11: Minimizing the Steady-State Production Cost of a Gold
Cyanidation Leaching Process added to the database.

June 5, 2015

Some changes have been made to the code of Test Problem #10: Iterative
Tuning of a Fixed-Order Controller in a Torsional System so as to avoid overly
large cost function values for certain decision variable choices.

March 11, 2015

The ExpOpt database upgrades to Version 1.2. The testing of algorithms is
now automated and is continuously being carried out on dedicated computers.

December 31, 2014

As 2014 ends, the ExpOpt database upgrades to Version 1.1. It is now pos-
sible to view the plots corresponding to the results of the individual trials for
any algorithm/problem by clicking on the algorithm name in the results table.

December 24, 2014

Test Problem #10: Iterative Tuning of a Fixed-Order Controller in a Torsional
System added to the database.

31

mailto:gene.a.bunin@ccapprox.info

December 12, 2014

Test Problem #9: Batch-to-Batch Tuning of a Temperature-Tracking Model-
Predictive Controller added to the database.

December 9, 2014

Test Problem #8: Maximizing Production in a Fed-Batch Reactor with Three
Reactions added to the database.

December 1, 2014

Test Problem #7: Maximizing Production in a Batch Reactor with a Reversible
Reaction added to the database.

November 17, 2014

Test Problem #6: Maximizing Production in a Continuous Stirred-Tank Re-
actor added to the database.

November 12, 2014

Test Problem #5: Minimizing the Overall Pumping E�ort in the "Trois Bacs"
added to the database.

October 15, 2014

Constraint Adaptation added to the list of algorithms.

October 12, 2014

Test Problem #4: Maximizing Electrical E�ciency in a Solid Oxide Fuel Cell
Stack added to the database.

October 2, 2014

Initial version of the database o�cially launched, with three test problems and
four algorithms.

32

	Overview
	Solution Procedure
	Performance Metrics
	Metrics 1-3: Average Suboptimality with Penalty for Constraint Violations
	Metric 4: Number of Constraint Violations
	Metrics 5-7: Suboptimality at the Final Experiment with Penalty for Constraint Violations
	Metrics 8-10: Number of Experiments Needed to Converge within a Tolerance
	Metric 11: Average Computation Time of Algorithm per Iteration

	Algorithms
	Test Problems and Results
	Test Problem #1: Maximizing Profit in the Williams-Otto Reactor
	Test Problem #2: Maximizing Profit in the Williams-Otto Reactor (Constrained)
	Test Problem #3: Minimizing the Batch Time of Polystyrene Production
	Test Problem #4: Maximizing Electrical Efficiency in a Solid Oxide Fuel Cell Stack
	Test Problem #5: Minimizing the Overall Pumping Effort in the "Trois Bacs"
	Test Problem #6: Maximizing Production in a Continuous Stirred-Tank Reactor
	Test Problem #7: Maximizing Production in a Batch Reactor with a Reversible Reaction
	Test Problem #8: Maximizing Production in a Fed-Batch Reactor with Three Reactions
	Test Problem #9: Batch-to-Batch Tuning of a Temperature-Tracking Model-Predictive Controller
	Test Problem #10: Iterative Tuning of a Fixed-Order Controller in a Torsional System
	Test Problem #11: Minimizing the Steady-State Production Cost of a Gold Cyanidation Leaching Process

	Submit Problem/Algorithm
	Update Log

