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Abstract The piecewise-concave function may be used to
approximate a wide range of other functions to arbitrary
precision over a bounded set. In this short paper, this
property is proven for three function classes: (a) the
multivariate twice continuously differentiable function, (b)
the univariate Lipschitz-continuous function, and (c) the
multivariate separable Lipschitz-continuous function.
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Following Zangwill’s definition [11], we define the
piecewise-concave function, p : Rn → R, as the pointwise
maximum of np concave functions pi:

p(x) = max
i=1,...,np

pi(x), (1)

with x ∈ Rn the variable vector. While often arising directly
in management science [10, 9, 2, 4] and location theory
[5] problems, the use of such functions as approximators
of more general functions has been suggested more than
once – first by Zangwill himself [11], and then by Rozvany
in the context of structural optimization [7, 8]. Recently,
the piecewise-concave function has also been proposed
as the link that allows the approximation of a nonlinear
programming problem by a reverse convex programming
problem in nonconvex global optimization [3].

In the present paper, we examine the quality of
the piecewise-concave approximation and prove that the
approximation may be arbitrarily good for three general
classes of functions over a bounded domain X . These are:

1. the twice continuously differentiable (C 2) function fc :
Rn→ R,
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2. the Lipschitz-continuous univariate function fu : R→R,
3. the Lipschitz-continuous separable function fs :Rn→R.

Theorem 1 (Piecewise-concave approximation of C 2

functions) Let fc : Rn → R be C 2 over X . It follows that
there exists a piecewise-concave approximation p such that

max
x∈X
| fc(x)− p(x)| ≤ ε (2)

for any ε > 0.

Proof The proof follows from the D.C. (difference of
convex) decomposition of fc over X [6, Corollary 4.1]:

fc(x) = fcvx(x)+ fccv(x)
fcvx(x) = fc(x)+µ‖x‖2

2
fccv(x) =−µ‖x‖2

2,

(3)

where the convexity of fcvx is assured for µ > 0 sufficiently
large. Since fcvx is clearly C 2 over X as well, it follows that
it can be approximated by a piecewise-linear function

l(x) = max
i=1,...,np

(
aT

i x+bi
)

(4)

such that

max
x∈X
| fcvx(x)− l(x)| ≤ ε (5)

for any ε > 0. Choosing

p(x) = fccv(x)+ l(x) = max
i=1,...,np

(
fccv(x)+aT

i x+bi
)

(6)

and reformulating (5) yields the desired result:

max
x∈X
| fcvx(x)+ fccv(x)− fccv(x)− l(x)|=

max
x∈X
| fc(x)− p(x)| ≤ ε. ut

(7)
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From the point of view of actually computing the
approximation, the above result is largely conceptual in
nature since a D.C. decomposition may not be available for a
given fc, and one has to have a lower bound on the minimum
eigenvalue of the Hessian of fc to know what value of
µ is “sufficiently large” [1]. In the case where a D.C.
decomposition is available, obtaining the approximation
simply becomes a matter of approximating fcvx, for which
very simple methods such as discretizing and taking linear
approximations of fcvx at the discretization points could
suffice.

Theorem 2 (Approximation of Lipschitz-continuous
univariate functions) Let fu : R → R be Lipschitz-
continuous over X = {x ∈ R : x≤ x≤ x}:

| fu(xa)− fu(xb)|< κ|xa− xb|, ∀xa,xb ∈X (xa 6= xb), (8)

with κ > 0 denoting the Lipschitz constant. It follows that
there exists a piecewise-concave approximation p such that

max
x∈X
| fu(x)− p(x)| ≤ ε (9)

for any ε > 0.

Proof Let p be defined by concave parabolas:

p(x) = max
i=1,...,np

(
β2,ix2 +β1,ix+β0,i

)
, (10)

where β2 ∈ Rnp
− and β1,β0 ∈ Rnp , and consider the

discretization given by xd = {x,x+∆x, ...,x−∆x,x}, with
∆x > 0 dictating the precision. Let np = (x− x)/∆x be the
number of discretization subintervals, each of length ∆x.

We will enforce that each pi(x) = β2,ix2 + β1,ix + β0,i
satisfy the following criteria:

pi(xd,i +0.5∆x) = fu(xd,i +0.5∆x)
d pi

dx

∣∣∣
xd,i

= 2κ

d pi

dx

∣∣∣
xd,i+1

=−2κ,

(11)

where xd,i denotes the ith element of xd . If written and solved
as a linear system, (11) translates into the following:β2,i

β1,i
β0,i

=

 (xd,i +0.5∆x)2 xd,i +0.5∆x 1
2xd,i 1 0

2xd,i+1 1 0

−1

 fu(xd,i +0.5∆x)
2κ

−2κ

 .
(12)

This solution exists and is unique as long as ∆x> 0, with
the resulting pi expressed analytically as

pi(x) = −
2κ

∆x
x2−2κ

(
1−

2xd,i+1

∆x

)
x−

2κx2
d,i

∆x
−0.5κ∆x−2κxd,i + fu(xd,i +0.5∆x).

(13)

By enforcing the three conditions of (11), the following
properties are guaranteed:

1. pi is quadratic and concave, with β2,i =−2κ/∆x < 0.
2. pi is a strict underestimator of fu at all points in [x,x]

that are outside the open interval (xd,i,xd,i+1). This may
be proven as follows.
First, consider the function

Li(x) = fu(xd,i +0.5∆x)−κ|x− xd,i−0.5∆x|, (14)

which is the Lipschitz “sawtooth” underestimator of fu,
generated around x = xd,i + 0.5∆x. It follows from the
definition of the Lipschitz constant that

Li(x)< fu(x), ∀x ∈ [x,x]\{xd,i +0.5∆x}. (15)

Given the construction of pi, one sees that Li(x) = pi(x)
at x = xd,i,xd,i+1. Consider now the function

pi(x) = 2κx+ fu(xd,i +0.5∆x)−2κxd,i−0.5κ∆x, (16)

which is the linearization of pi at x = xd,i. It is evident
that pi(x) ≤ Li(x), ∀x ∈ [x,xd,i], as both are linear and
intersect at xd,i, with pi having a greater positive slope.
From the concavity of pi, it is also true that pi(x) ≤
pi(x), ∀x. It follows that

pi(x)≤ pi(x)≤ Li(x)< fu(x), ∀x ∈ [x,xd,i]. (17)

A symmetrical analysis around xd,i+1 yields a
symmetrical result, and combining the two yields

pi(x)< fu(x), ∀x ∈ [x,xd,i]∪ [xd,i+1,x]. (18)

3. pi approximates fu with zero error at x = xd,i +0.5∆x.
4. The interval for which pi(x) = p(x) is a strict subinterval

of [xd,i − 0.5∆x,xd,i+1 + 0.5∆x], i.e., pi can only be
the “piece” of the piecewise-maximum function in the
interior of this interval. This may be proven as follows.
Supposing first that 1 < i < np, let pi−1 denote the
concave quadratic function for the neighboring interval
[xd,i−1,xd,i], and consider the difference

pi−1(x)− pi(x) =−4κ(x− xd,i)

+ fu(xd,i−0.5∆x)− fu(xd,i +0.5∆x).
(19)

For x = xd,i−0.5∆x, one may build on the result of (18),
which states that pi(xd,i − 0.5∆x) < fu(xd,i − 0.5∆x),
and Property 3, which states that pi−1(xd,i− 0.5∆x) =
fu(xd,i−0.5∆x), to obtain the following:
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−pi(xd,i−0.5∆x)>− fu(xd,i−0.5∆x)
pi−1(xd,i−0.5∆x) = fu(xd,i−0.5∆x)
⇒ pi−1(xd,i−0.5∆x)− pi(xd,i−0.5∆x)> 0,

(20)

which shows that the piece pi−1 must be greater than
pi at x = xd,i− 0.5∆x. From examining (19), it is clear
that the derivative of this difference with respect to x is
negative, i.e., the difference increases with decreasing
x. This implies that pi−1(x)− pi(x)> 0 remains true on
the interval x∈ [x,xd,i−0.5∆x], and that pi cannot be the
maximal piece on this interval. A symmetrical analysis
shows that pi+1(x)− pi(x)> 0 for x∈ [xd,i+1+0.5∆x,x],
i.e., that pi cannot be the maximal piece on this interval
either. The overall result is thus summarized as

pi(x)< p(x),

∀x ∈ [x,xd,i−0.5∆x]∪ [xd,i+1 +0.5∆x,x].
(21)

For the edge cases of p1 and pnp , the same analysis
applies but only one side has to be considered for each,
since the other falls outside of [x,x]. In particular, the
results obtained for the edge cases would be as follows:

p1(x)< p(x), ∀x ∈ [x+1.5∆x,x]

pnp(x)< p(x), ∀x ∈ [x,x−1.5∆x].
(22)

Together, Properties 2 and 3 imply that p(x) = fu(x) at
the midpoint of each discretization interval [xd,i,xd,i+1], with
Property 3 establishing the zero-error approximation due to
the piece pi and Property 2 establishing that every other
piece must strictly underestimate the function at this point.

It now remains to consider the approximation error
between the midpoints of the discretization intervals, for
which the first step requires the identification of the
Lipschitz constant of p. By Property 4, every piece pi is
limited to the open interval (xd,i − 0.5∆x,xd,i+1 + 0.5∆x),
from which it follows that the Lipschitz constant of p cannot
exceed the Lipschitz constant of one of these pieces over the
relevant interval:

sup

x∈

(
xd,i−0.5∆x,
xd,i+1 +0.5∆x

)
∣∣∣∣∣d pi

dx

∣∣∣
x

∣∣∣∣∣
= sup

x∈

(
xd,i−0.5∆x,
xd,i+1 +0.5∆x

)
∣∣∣4κ

∆x
(xd,i− x)−2κ

∣∣∣= 4κ.

(23)

This allows for the approximation error to be bounded with
respect to any discretization interval midpoint xd,i + 0.5∆x
by considering the Lipschitz sawtooth bounds for both fu
and p:

fu(xd,i +0.5∆x)−κ|x− xd,i−0.5∆x|
≤ fu(x)≤ fu(xd,i +0.5∆x)+κ|x− xd,i−0.5∆x|,

p(xd,i +0.5∆x)−4κ|x− xd,i−0.5∆x|
≤ p(x)≤ p(xd,i +0.5∆x)+4κ|x− xd,i−0.5∆x|,

(24)

∀x ∈ [x,x]. Negating the latter:

−p(xd,i +0.5∆x)−4κ|x− xd,i−0.5∆x|
≤ −p(x)≤−p(xd,i +0.5∆x)+4κ|x− xd,i−∆x|

(25)

and adding it to the former, while noting that fu(xd,i +

0.5∆x) = p(xd,i +0.5∆x), yields

−5κ|x− xd,i−0.5∆x|
≤ fu(x)− p(x)≤ 5κ|x− xd,i−0.5∆x|, (26)

which is equivalent to

| fu(x)− p(x)| ≤ 5κ|x− xd,i−0.5∆x|, ∀x ∈ [x,x]. (27)

Without loss of generality, we may suppose x to lie
between the discretization points xd,i and xd,i+1, i.e., that

x = θxd,i +(1−θ)xd,i+1, θ ∈ [0,1]. (28)

Since xd,i+1 = xd,i +∆x, this may be rewritten as

x = θxd,i +(1−θ)(xd,i +∆x) = xd,i +∆x−θ∆x, (29)

and substituted into (27) to obtain

| fu(x)− p(x)| ≤ 5κ∆x|0.5−θ |, ∀x ∈ [x,x]. (30)

Given that θ must lie in the unit interval, the worst-case
upper bound that is independent of θ clearly corresponds to
the cases where θ is either 0 or 1, and as such

| fu(x)− p(x)| ≤ 2.5κ∆x, ∀x ∈ [x,x]. (31)

For a given ε , it then suffices to choose ∆x = ε

2.5κ
to

obtain the desired result. ut

In this case, we note that the proof provides us
with a simple method to construct a piecewise-concave
approximation to arbitrary precision, provided that a proper
estimate of the Lipschitz constant κ is available. For a
univariate function on a bounded interval, it is expected that
obtaining such an estimate should not be very difficult for
most problems.

The approximation result for a Lipschitz-continuous
separable function follows as a corollary to Theorem 2.
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Corollary 1 (Approximation of a Lipschitz-continuous
separable function) Let fs : Rn → R be Lipschitz-
continuous and separable over X :

fs(x) =
n

∑
j=1

fu, j(x j), (32)

with fu, j : R → R denoting its univariate components. It
follows that there exists a piecewise-concave approximation
p such that:

max
x∈X
| fs(x)− p(x)| ≤ ε (33)

for any ε > 0.

Proof The Lipschitz continuity of fs implies the Lipschitz
continuity of its univariate components fu, j. Likewise, the
boundedness of X implies that the individual variables x j
may be bounded by some finite x j,x j so that x j ≤ x j ≤
x j, ∀ j = 1, ...,n. It then follows from Theorem 2 that for
each j there exists a piecewise-concave approximation p j :
R→ R such that

max
x j∈[x j ,x j ]

| fu, j(x j)− p j(x j)| ≤ ε j (34)

for any ε j > 0.
An equivalent statement to (34) is that

−ε j ≤ fu, j(x j)− p j(x j)≤ ε j, ∀x j ∈ [x j,x j], (35)

which, if summed over j = 1, ...,n, yields

−
n

∑
j=1

ε j ≤
n

∑
j=1

fu, j(x j)−
n

∑
j=1

p j(x j)≤
n

∑
j=1

ε j, ∀x ∈X , (36)

or

−
n

∑
j=1

ε j ≤ fs(x)−
n

∑
j=1

p j(x j)≤
n

∑
j=1

ε j, ∀x ∈X . (37)

Let us choose

p(x) =
n

∑
j=1

p j(x j), (38)

which must be piecewise-concave since the sum of
continuous piecewise-concave functions must also be
continuous piecewise-concave [11]. Substituting (38) into
(37) and returning to the equivalent worst-case formulation
yields:

max
x∈X
| fs(x)− p(x)| ≤

n

∑
j=1

ε j, (39)

where choosing, as one example, ε j = ε/n yields the desired
result. ut
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